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Abstract 

This study compares the equivalent neutral wind estimates of two space based active 

microwave sensors called scatterometers, the ASCAT (Advanced SCATterometer) and OSCAT 

(Oceansat-2 scatterometer), to the average wind profiles as estimated from continuous conical 

scans of a Doppler lidar deployed on a research vessel for a 3 month period in the Indian Ocean.  

Statistical analysis of matched pairs between the OSCAT derived wind speeds and the lidar 

measured wind speeds show the OSCAT is positively biased by 0.5 m s-1.  While the comparison 

between the pairs of lidar and ASCAT winds show no bias.  The effect of atmospheric stability in 

estimating winds from surface roughness as compared to the Doppler wind measurements was 

investigated using a calculated stability indicator, Richardson number.  Using the OSCAT and 

lidar matched pairs, analyses shows a statistical significant positive scatterometer bias (p-value < 

0.01) of 0.83 m s-1 in wind speeds associated with unstable atmospheric conditions, or those with 

Richardson numbers greater than -0.4.  

 The vertical profiles of wind speed from the lidar not only capture winds near the surface, 

but also at heights up to 2 km.  Data at between 50 m and 200 m is increasingly relevant as wind 

turbines for energy generation climb to these heights to harness more constant non-turbulent wind 

flow. Methods to model or extrapolate surface wind to upper levels exist. A wind shear power law 

or a surface roughness log law is commonly used by the wind energy industry.   Using knowledge 

of atmospheric and surface conditions to constrain the shear exponent of the power law and surface 

roughness length of the log law, near surface wind speed estimates were extrapolated using these 

two models and compared to the lidar measured estimates at wind turbine heights. Biases between 

the modeled and lidar estimated winds found at rotor plane heights are presented. Using the log 

law and a surface roughness parameter of 0.01 to predict wind speeds at various heights and in 3 

atmospheric stability scenarios, biases between the model and measurements range from 2.26 – 

0.16 m s-1. 

 

 

1.  Introduction 

Since the JPL (NASA Jet Propulsion Laboratory) QuikSCAT (SASS was the QuikSCAT 

scatterometer system) was launched in 1978, space based scatterometers have provided global 

estimates of near surface wind speed and direction.  Wind speed is inferred from the Normalized 

Radar Scattering Cross-section (NRSC), which is a function of surface roughness.  Wind direction 

is inferred from the azimuthal dependence of the sea surface roughness relative to the wind 

direction.  These wind products have been compared with other scatterometer, buoy, and 

dropwindsonde data, as well as, observations from research and voluntary observing vessels.  

 

1.1  Scatterometer and Buoys 

The utility of the first orbiting scatterometers, Seawinds and the NASA Scatterometers 

(NSCAT and NSCAT-2), has been established through comparisons with anemometers on buoys. 

Freilich and Dunbar (1999)  used a nonlinear least squares fit between wind data from the U.S. 

National Data Buoy Center, NDBC, ocean buoys and the NSCAT and found a slope of 1.0, with 

residual root-mean square error of 1.3 m s-1. Dickinson, Kelly et al. (2001) showed that the 

NSCAT-2 scatterometer derived winds compared well with the Tropical Atmosphere Ocean, TAO, 

buoy array in the Pacific Ocean, with zonal and meridional linear slopes of 0.97 and 1.01, 
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respectively.   Plagge, Vandemark et al. (2009) shared results from linear regression analysis 

between co-located Seawinds scatterometer measurements and NDBC buoys in the Gulf of Maine 

where speedQuikScat  =  0.96*(speedBuoy) – 0.19, and correlation coefficient, R, was 0.915.  In the 

Indian Ocean,  Satheesan, Sarkar et al. (2007) report mean differences in wind speed of 0.37 m s-

1 and wind direction of 5.8° , and  correlation coefficients of  Rspeed = 0.87 and  Rdir = 0.75 for co-

located Seawinds measurements with near surface wind measurements from moored National 

Institute of Ocean Technology (NIOT) buoys and a Triangle Trans-Ocean buoy Network 

(TRITON) buoy.   

 

1.2  ASCAT and OSCAT and Buoys 

The more recent scatterometers addressed in this paper have also been compared with 

winds from buoys.  The Research Moored Array for African-Asian-Austrialian Monsoon Analysis 

and Prediction (RAMA) buoy wind estimates were compared to the satellite winds of the 

Oceansat-2 scatterometer, OSCAT,  in the Indian Ocean by Rani and Gupta (2013). Co-located 

results from ~16 buoys show agreement, the monthly root mean square difference between 

OSCAT winds and buoy winds is 1.5-2.5 m s-1 and 8-15° for speed and direction, respectively.  

Monthly bias, calculated by subtracting buoy from OSCAT estimates, range from - 1.16 to 0.16 m 

s-1 for speed and -6.05 to 9.41° for direction.  

Bentamy, Croize-Fillon et al. (2008) validated the European Meteorological Satellite 

Organization’s Advanced SCATerometer (ASCAT) global wind estimates using NDBC buoy 

data.  Using symmetrical regression analysis, a slope between 0.93 – 1.03 was reported depending 

on region. They also report wind speed from ASCAT is biased low by 0.5 m s-1, with an RMS 

difference of 1.72 m s-1.  In the Bay of Bengal, Mahanty et al. report ASCAT has a small positive 

bias of 0.06 m s-1 with an RMSE of 0.96 and correlation coefficient of 0.95 when compared to 

NIOT buoys, (Mahanty 2012). 

 

1.3  ASCAT and SASS and Dropwindsonde 

ASCAT wind estimates have also been compared to the space based Seawinds 

scatterometer, SASS, as well as, to near surface dropwindsonde data deployed from aircraft.  

Symmetrical regression showed the slope of the best fit equation was 0.95, with a correlation 

coefficient of 0.94 m s-1 between satellite (ASCAT and SASS)  instruments, Bentamy, Grodsky et 

al. (2012).  They also suggest a bias in speed of up to 1 m s-1 in the tropical convergence zones, 

but no bias in wind direction. Chou, Wu et al. (2013) looked at the near surface wind estimates 

from Seawinds SASS and the averaged surface to 40 meter wind measurements from 

dropwindsonde and found  1.72 m s-1 and 18° RMS difference, in speed and direction respectively.  

A slight negative bias (ASCAT low) was determined for wind speeds less than 12 m s-1, in speed 

of 1.7 m s-1, and in direction of 23.3°.  

 

1.4  Scatterometers and Research and Voluntary Vessels 

Near surface wind observations are also available from research vessel platforms and have 

been compared to space based wind estimates.  Co-located wind speed observations in the open 

ocean and the North Sea between the ERS-1 Active Microwave Instrument (AMI) and data from 

merchant ships were compared by Kent et al. (1998). Using a statistical model that accounted for 

error in both variables, they show the equation for the best fit was speedship = 1.025*speedAMI  + 

0.225.  Bourassa, Legler et al. (2003) report Seawinds validation by comparing the wind data to 

that of 8 research ships.  Values vary by region (no comparison for Indian Ocean), but the global 
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RMS difference between Seawinds and research vessels for speed was 1.1 m s-1 and for direction 

= 15°. They also showed that the geophysical model function, GMF, used to estimate wind speed 

and direction from the backscatter coefficients produced slightly different bias, GMF1  bias: speed 

= 0.06 m s-1, direction = 1.6°, GMF2  bias: speed = 0.01 m s-1, direction = 1.99°.   

 

2. Analysis of Lidar and Scatterometer Winds in Indian Ocean 

The discussion in this article shows results from a comparison of the wind estimates from 

space based scatterometers, ASCAT and OSCAT, co-located with in situ wind measurements from 

a Doppler lidar aboard a research vessel in the Indian Ocean.  Scatterometers estimate wind speed 

and direction using scatterometric backscatter measurements of surface roughness.  Wind speed 

and direction are measured by scanning lidar using the Doppler shift technique and combining 

estimates from multiple scans to form vertical profiles.  

The ASCAT and OSCAT instruments are active microwave sensors onboard two sun 

synchronous, polar orbiting satellites, EUMESAT (European Organisation for the Exploitation of 

Meteorological Satellites) MetOP-A and ISRO (Indian Space Research Organization) Oceansat-2, 

respectively.  Not only is high resolution global data available at 12.5 km resolution from the 

scatterometers, but nearly daily co-located, spatially and temporally, data pairs between these 

scatterometers and the ship-based instruments, lidar and anemometer, are available for 

comparison. 

 

2.1 Observation period and location 

 Over a 3 month period, 01-September-2011 to 06-December-2011, the DYNAMO, 

Dynamics of the Madden Julian Oscillation, experiment took place in the Indian Ocean.  The 

Scripts Institution of Oceanography R/V Roger Revelle was deployed with NOAA Earth System 

Research Laboratory, ESRL, Doppler lidar and an air-sea flux package to retrieve the wind vector, 

as well as, air and sea surface temperature measurements.  Figure 1 shows the region of interest 

and the comparison locations. 

 

 

Figure 1.  Location of the paired, ship based lidar and space based scatterometer, wind speed estimates along the 

R/V Roger Revelle ship track.  
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2.2 Advanced SCATterometer -- ASCAT 
ASCAT is a C-Band, 5.25 GHz, dual pencil-beam rotating scatterometer.  ASCAT uses six 

beams at three look angles, and provides backscattering cross-section measurements with two 550 

km wide swaths separated by the satellite track (360 km).  Three beams sweep the right side of the 

satellite ground track while three beams sweep the left.  This allows the wind to be probed in 

multiple directions.  These backscatter cross-section measurements paired with a geophysical 

inversion model are used to derive near surface (10 m) equivalent neutral wind speed.  

Additionally, the ASCAT signal response depends on the incident angle between the pulse and the 

ocean wave, this information is used to infer direction.  The ASCAT mission required the wind 

speed and direction retrievals with accuracy of 2 m s-1 and 20°, respectively, over wind speeds of 

4 – 24 m s-1,  Gelsthorpe, Schied et al. (2000),  Figa-Saldana, Wilson et al. (2002), Wilson, 

Anderson et al. (2010), Verhoef and Stoffelen (2010). 

Geophysical Model Functions (GMF) relate the backscatter, NRSC, from surface waves to 

surface stress indicating wind conditions.  Using a GMF called CMOD for C-Band radar, estimates 

of equivalent neutral wind speed are derived from ASCAT data, Hersbach, Stoffelen et al. (2007),  

and Verhoef, Portabella et al. (2008).  These estimates represent the wind at 10 m in height from 

the surface assuming the atmosphere is neutrally stratified. Verhoef, Portabella et al. (2008) report 

that the mean difference between neutral and true winds is +0.2 m s-1 for ASCAT. 

The level 2 ASCAT wind products used in this study are 10 m equivalent neutral stability 

winds.  The highest spatial resolution of 12.5 km gridded data was chosen as it is expected that 

this data resolves smaller scale wind features in greater detail than the other available 25 or 50 km 

wind products.  The data were obtained from the website 

http://www.knmi.nl/scatterometer/ascat_osi_l2_prod/  The Royal Netherlands Meteorological 

Institute (KNMI) processes and hosts the global ASCAT data as a part of the EUMETSTAT Ocean 

and Sea Ice Satellite Application Facility (OSI SAF), a project by Meteo France, the Norwegian 

Meteorological Institute and the Danish Meteorological Institute. The processing software for the 

KNMI wind products is developed within the framework of the Numerical Weather Prediction 

Satellite Application Facility (NWP SAF) sponsored by EUMETSAT.  References and detailed 

ASCAT data descriptions are found in  

www.knmi.nl/scatterometer/publications/pdf/ASCAT_Product_Manual.pdf , Verhoef and 

Stoffelen (2010). 

 

2.3 Oceansat-2 Scatterometer - OSCAT 

 The OSCAT is a Ku-Band, scanning scatterometer.  It employs two pencil beams that 

sweep the surface in a circular pattern at 20 rpm at 13.5 GHz collecting backscatter cross-section 

measurements, (Jaruwatanadilok, Stiles et al. 2014).  Like the ASCAT data, these measurements, 

along with a geophysical inversion model, are used to derive equivalent neutral wind speed, and 

likewise uses the incident angle between the pulse and the ocean wave to infer direction.   The 

OSCAT mission required the wind speed and direction retrievals from the backscatter cross-

section data to have accuracy of 2 m s-1 and 20°, respectively, over wind speeds of 4 – 24 m s-1.  

Additionally, OSCAT data products issued by the OSI SAF are characterized by a wind component 

RMS error smaller than 2 m s-1 and a bias of less than 0.5 m s-1 in wind speed.   

 The NSCAT-2 Ku-band GMF was used in the retrieval of wind speed and direction from 

the OSCAT backscatter cross-section data.  A linear scaling was applied to better represent wind 

http://www.knmi.nl/scatterometer/ascat_osi_l2_prod/
http://www.knmi.nl/scatterometer/publications/pdf/ASCAT_Product_Manual.pdf
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speeds above 15 ms-1 to these retrievals and the results carry the GMF designation NSCAT-4.  

Wind speeds reported from OSCAT used in this discussion have been retrieved from geophysical 

model function, NSCAT-2 Ku-band GMF, and modified to reflect NSCAT-4 retrievals, Wentz 

and Smith (1999).     

High resolution (12.5 km grid) near surface neutral stability wind products from OSCAT, 

were obtained from the NASA Jet Propulsion Laboratory’s, PODAAC, Physical Oceanography 

Distributed Active Archive Center in Pasadena, CA at 

http://podaac.jpl.nasa.gov/dataset/OS2_OSCAT_LEVEL_2B_OWV_COMP_12_V2 , (SeaPAC 

2013). The archive is provided as a service to the oceanographic and meteorological research 

communities on behalf of the NASA/JPL QuikSCAT Project in collaboration with the ISRO.   

Documentation may be found at 

ftp://podaac.jpl.nasa.gov/OceanWinds/oceansat2/L2B/oscat/jpl/docs/ 

 

 2.4 Ship Measurements: Doppler Lidar and Flux 

NOAA ESRL Chemical Sciences Division’s, CSD,  scanning, coherent, and pulsed High 

Resolution Doppler Lidar, HRDL, near-IR signal scatters off of aerosol targets carried by the wind, 

using the Doppler-shifted frequency between the transmitted and reflected light to provide range 

resolved estimates of line of sight or radial velocity (Grund, Banta et al. 2001).  This study makes 

use of vertically resolved profiles of horizontal wind speed and wind direction computed from the 

radial velocities retrieved from a 20 minute scan sequence, consisting of azimuthal and elevation 

scans.   The theory of retrieving vertical profiles of horizontal wind velocity and wind direction 

from lidar signal is detailed in Browning and Wexler (1968).  The processing algorithms 

implemented for lidar data used in this discussion are detailed in Banta, Pichugina et al. (2006) 

and Pichugina, Banta et al. (2011).  Deployed on the R/V Roger Revelle, the lidar acquired data, 

using  onboard compensation to account for platform motion, nearly continuously from 01-Sept-

2011 to 06-Dec- The motion compensation system actively stabilizes the beam and allows for high 

precision measurements that are void of reference frame acceleration and motion due to ocean 

wave activity, thus the wind speed and direction retrievals are estimates of true wind, (Pichugina 

et al. 2012).  Although the lidar vertical profiles are from ~12 m to ~ 2000 m, the data point at the 

lowest height of each profile, with a mean value of approximately 15.5 m ASL is used in this 

discussion. The data at this height represent an average over a horizontal area of mean radius of 

335.9 m.   Lidar vertical profiles are available by email request to the authors, images are at: 

http://www.esrl.noaa.gov/csd/groups/csd3/measurements/dynamo/     

In addition to the lidar measurements, the NOAA ESRL Physical Sciences Division, PSD,  

Air-Sea Interaction group deployed (Fairall, White et al. 1997) sonic anemometers mounted on the 

R/V Roger Revelle forward mast that also measured wind speed and direction. Gill Solent 

anemometers were installed at 17.5 m ASL.  The anemometer wind estimates are very highly 

correlated (R = 0.97, m = 1.01) with the lidar data.  Additionally, aYSI 46040 thermistor affixed 

to a tygon tube was dragged from a boom about 4 m from the hull, floating at a depth of 5 cm 

below the ocean surface, provided seawater temperature data.  A Vaisala HMP-35 thermometer 

measured air temperature.  The wind vector and temperature data, made available from ESRL with 

a time resolution of 5 minutes at http://www.esrl.noaa.gov/psd/psd3/cruises/ were averaged to 20 

minutes. 

 

2.5 Comparison Analysis 

ftp://podaac.jpl.nasa.gov/OceanWinds/oceansat2/L2B/oscat/jpl/docs/
http://www.esrl.noaa.gov/csd/groups/csd3/measurements/dynamo/
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The scatterometer data sets were searched for co-located pairs in the ship-borne lidar data 

set.  Initial spatial search criteria were within 1° radial distance and within 6 hours in time.  A 

summary of the temporal and spatial differences between the lidar and scatterometer matches for 

the 01-Sept-2011 to 06-Dec-2011 data set is in Table 1.   

 

 

 

ASCAT and 

lidar 

OSCAT and 

lidar 

Max Time Difference 4.1 hours 4.7 hours 

Mean Time Difference 0.17 hours 1.9 hours 

Max Spatial Difference 9.8 km 9.7 km 

Mean Spatial Difference 0.97 km 1.4 km 
 

Table 1.   A Summary of the spatial and temporal differences between the lidar and scatterometer matching 

pairs. 

 

To compare scatterometer and lidar retrievals of wind speed and direction, we used an 

Orthogonal Direction Regression, ODR, (Cantrell (2008), (Isobe, Feigelson et al. (1990).  This 

method accounts for variability in both measurements.  The differences between the slope, m, of 

the regressions and unity, were tested using the hypothesis H0: m = 1.  The bias, , was estimated 

as the mean difference between lidar and scatterometer estimates, and the significance of these 

values was obtained by evaluating the p-values from Student’s T-tests or T-means tests. 

Wind speed data from the OSCAT and the lidar were matched spatially and temporally 

over the entire experiment period from 01-Sept-2011 to 06-Dec-2011.  89 matches were found, 

with 81 points having speeds greater than 2 m s-1.  ODR and mean difference (bias) analysis results 

are included in Table 2.  Two-sided Students-T tests reveal a statistically significant ~0.5 m s-1 

bias between the two instruments for all wind speeds and for those greater than 2 m s-1.   

 

Wind Speed 

U 

Bias 

(m s-1) 

2-sided 

 T-test 
  

Regression 
m=slope 

b=intercept 
H0:m=1 H0:b=0 

Corr. 

Coeff. Fit 

Parameters 

 p-valbias N m b p-valm p-valb R  

Lidar - OSCAT -0.507 0.004 89 1.022 0.405 0.93 0.12 0.81 

Lidar - OSCAT        

(gt 2 m s-1) 
-0.55 0.04 81 0.9966 0.571 0.92 0.11 0.77 

Lidar – OSCAT  

(no rain) 
-0.099 0.58 26 0.793 -0.688 0.92 0.0003 0.78 

Lidar – OSCAT  

(gt 2 m s-1, no rain) 
-0.229 0.234 20 0.76 0.867 0.91 9.24E-05 0.74 

Lidar - ASCAT  -0.009 0.97 49 0.9452 0.271 0.96 0.05 0.94 

Lidar - ASCAT 

(gt 2 m s-1) 
-0.066 0.59 39 0.891 0.685 0.96 0.43 0.92 

ASCAT - OSCAT -0.38 1.67E-31 3634 0.988 0.451 0.99 0.987 0.73 

ASCAT – OSCAT   

(gt 4 m s-1) 
-0.24 1.27E-11 2344 1.124 -0.625 0.98 0.979 0.63 
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Table 2.  Wind Speed, U, statistical analysis results comparing matching lidar and scatterometer pairs, and 

scatterometer and scatterometer pairs, found in northern Indian Ocean, 01-Sept-2011 to 06-Dec-2011, with the 

exception of the OSCAT and lidar no rain comparison results, the time period is 30-Sept-2011 to 06-Dec-2011. 

 

  Wind speed data from the OSCAT and the lidar were matched spatially and temporally 

over the shorter time period from 30-Sept-2011 to 06-Dec-2011. Results from statistical 

comparison are shown in Table 2.  62 matches were found, with 48 points having speeds greater 

than 2 m s-1.  Although there are fewer matching pairs, additional information was available for 

this time period. A TOGA (Tropical Ocean/Global Atmosphere) C-Band Doppler Radar provided 

additional data to characterize the existence of rain within a 25 km distance from the lidar and less 

than 30 minutes in time.  The radar data were quality controlled using software and hand editing 

as needed, the resulting images were visibly inspected to determine the rain-free cases. While 

reducing the data set, 26 of the 62 matches were determined to be rain free, with 20 of these points 

having data greater or equal to 2 m s-1.  Using all the matched data over the shorter time period, 

(as well as, wind speed data greater than 2 m s-1), a student’s T-test, revealed that the computed 

OSCAT wind speeds have a statistically significant positive bias when compared to lidar wind 

speeds.  After removing data points where rain was indicated within the larger 25 km TOGA 

footprint, the same analysis showed a smaller and statistically insignificant bias. Randomly 

reducing the “all data set” to a sample size of 26, (the number of samples with additional 

information about known rain), as well as the “greater than 2 m s-1 data set” revealed no statistical 

evidence that a the bias between the two instruments can be attributed to either rain or using wind 

speeds greater than 2 m s-1 in the analysis.  The results show that OSCAT wind speeds in both the 

reduced (in time to 30-Sept-2011 to 06-Dec-2011 and rain influenced data removal) and expanded 

data sets have a positive bias of ~0.5 m s-1.  The results show that the OSCAT and lidar wind 

speeds are closer in agreement during this Indian Ocean experiment than the results from Rani and 

Gupta (2013) where the OSCAT winds were compared to buoy wind speed measurements during 

the 2011 monsoon season. 

Temporally and spatially matched ASCAT and lidar data were also found for the same 

time period, 39 of the 49 matches were greater or equal to 2 m s-1.  The operational frequency of 

the ASCAT is 5.22 GHz, and therefore makes it less sensitive to rain, (Verhoef and Stoffelen 2010) 

than the Ku Band, however, the TOGA radar data was visually inspected to eliminate matches that 

may have rain influence outside of the lidar observing volume. Table 2 shows very good agreement 

between the ASCAT and lidar data, and the wind speed data from these two instruments have no 

statistically significant bias between them. 

The data from the two scatterometers, ASCAT and OSCAT, were also searched and paired.  

A larger spatial area of the Indian Ocean was considered for identifying matches between the 

scatterometers, from 8 N to 16 S in latitude, and 120 E to 65 E in longitude. 3634 comparable wind 

speed data points were found.  The distribution of the scatterometer wind speed estimates and 

results of the ODR fit are shown in Figure 2.  
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Figure 2.  Wind Speed distribution from Scatterometer, UASCAT and UOSCAT, and regression results for all 

matched pairs, 0 m s-1 ≤ U ≤ 20 m s-1. Mean difference is UASCAT - UOSCAT. 

 

OSCAT wind speed estimates exhibit a statistically significant positive bias of 0.38 m s-1 

when compared to the ASCAT estimates. Design specifications of the scatterometers indicate 

better skill in estimating wind speeds greater than  4 m s-1, (Verhoef and Stoffelen 2009), with 

2334 points meeting this speed threshold criteria, while the statistical analysis does not indicate 

results different than using all speeds, the bias of the OSCAT wind speed estimates of winds above 

4 m s-1 does tighten slightly.  Orthogonal Direction Regression results are listed in Table 2. 

All three of these sensors not only provide wind speed estimates, but also estimate wind 

direction.  Using the direction retrievals, at the same temporal and spatially matched wind speed 

locations as discussed previously, good statistical agreement is found between the sensors.  The 

accuracy for the ASCAT and OSCAT wind direction retrievals is 20° over a wind speed range of 

4 – 24 m s-1.  Using these parameters, and the knowledge that the OSCAT sensor’s 13.5 Ghz 

operating frequency is more sensitive to rain contamination, Table 3 summarizes the statistical 

findings of the direction comparison. The distribution of the inferred wind direction from the all 

of the matched scatterometer-scatterometer pairs and fit results are shown in Figure 3. ODR 

resulted in the slope, m, in the best fit equation showing no statistical significance, while the offset, 

b, is.  The bias, , between these the wind direction estimates from the lidar and scatterometer 

comparisons are within the expected tolerance range of the scatterometer instrumentation, and not 

statistically significant.   
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Wind Direction 
Bias 

°N 

2-sided  

T-test  
ODR Fit 

Parameters 
m=slope,   

b=intercept H0:m=1 H0:b=0 

   p-valbias N m b p-valm p-valb 

 

OSCAT – lidar 16.4 0.6 89 1.14 -27.5 0.95 5.45e-5 

OSCAT - lidar (gt 2 m s-1) 1.18 0.77 81 1.04 -7.75 0.94 0.02 

OSCAT - lidar (no rain) -12.13 0.88 26 1.67 -160.38 0.9 0.0003 

ASCAT – lidar 11.6 0.01 49 0.95 -8.27 0.91 0.0002 

ASCAT - lidar (gt 2 m s-1) -10.2 0.1 39 1.04 -17.9 0.93 0.02 

ASCAT - OSCAT -1 0.2 3634 1.1 -8.27 0.99 0.994 

ASCAT - OSCAT (gt 4 m s-1) -1.56 0.006 2344 1.02 -3.16 0.996 0.995 

 

Table 3. Results of statistical analysis of wind direction estimates for 01-Sept-2011 to 06-Dec-2011, except 

the results reported for the “no rain” lidar and OSCAT comparison, it is 30-Sept-2011 to 06-Dec-2011. 

 

 

Figure 3.  Inferred wind direction distribution and ODR results from scatterometer-scatterometer (ASCAT-

OSCAT) comparison including direction corresponding to wind speeds, 0 m s-1 < U < 20 m s-1. 

 

2.6 Stability and Richardson Number 

 Successful wind retrievals from scatterometry depend on the effects of atmospheric 

stability and temperature remaining small compared to the surface roughness as detected by the 

backscattered signal.   Kent (1998) showed that scatterometers were biased up to 30% due to 

increased stress at the surface in the North Sea.  As an indicator of atmospheric stability, 

Richardson number, Ri, may be computed with measurements of air and sea surface temperatures, 

(Shaw and Churnside 1997). 
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where g is gravitational acceleration, Ta and Tw are air and water temperatures (°C), z is the height 

of the wind measurement, and Uz is the measured wind speed at that height.  This quantity is 

negative for unstable atmospheric conditions, zero for neutral, and positive for stable.  Air and 

water temperatures were obtained from an instrument package specifically designed to measure 

air/sea fluxes, (Fairall, White et al. 1997), Zoumakis and Kelessis (1991).  

 Ri was computed; these estimates are found in Figure 4 for each of the lidar and 

scatterometer pairs, where the lidar wind speed was used in Equation 1.  All Ri are negative in the 

30-Sept-2011 to 06-Dec-2011 data set, with few positive values in the 01-Sept-2011 to 06-Dec-

2011 data set.  This indicates that the atmosphere was unstable to nearly neutral, and that sea 

surface temperatures were generally warmer than air temperatures for the matched observations. 

An unstable atmosphere favors turbulent vertical motions. 

 

 

Figure 4. Richardson Number, Ri, using all matched lidar and the scatterometer pairs over 01-Sept-2011 to 

06-Dec-2011. Top panel represents computed Ri with ASCAT wind speed, while the bottom panel are those 

computed with OSCAT wind speed. These lidar and scatterometer pairs were matched with SST and air temperature 
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from the NOAA ESRL PSD’s Air-Sea Interaction Group measurements also on the R/V Roger Revelle in the 

northern Indian Ocean. 

 

The measurement techniques differ between the lidar and scatterometer. Atmospheric 

stratification can cause equivalent neutral wind (scatterometer) to differ from Earth relative wind.  

The GMF techniques to infer wind speed from NRSC use an estimate of surface roughness in a 

neutrally stratified atmosphere.  If vertical motion in the atmosphere is present, the sea surface 

roughness is expected to increase, creating the potential for the retrieval technique to overestimate 

wind speed.  

 

Figure 5. Lidar and scatterometer wind speed comparison with Richardson number, Ri, in symbols, using 

matched lidar and OSCAT pairs, 01-Sept-2011 to 06-Dec-2011.  (No exclusions due to TOGA radar identified rain 

in larger observation region.) More unstable atmospheric conditions represented by circles, less unstable in stars.  

 

The star symbols in Figure 5 demonstrate that nearly neutral atmospheric stability is characterized 

by wind speeds above ~4 m s-1. Likewise, the light and variable winds below about 4 m s-1 (circles) 

are associated with instability in the atmosphere.    

 To determine if atmospheric stability plays a role in the 0.5 m s-1 bias seen between the 

lidar and the OSCAT wind speeds, a statistical comparison between the calculated Ri and the mean 

difference, , in the two sensors wind speed estimates was done.  The difference estimates and Ri 
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are pictured in Figure 6, and analysis results in Table 4.  The wind speed measurements were 

apportioned in Ri with a threshold of -0.4, this value was chosen for an even number distribution 

in each part, with 47 speeds having associated Ri greater than -0.4, and 42 associated with less 

than -0.4.  The results from this analysis show the more negative valued Ri, (more unstable 

atmospheric conditions), set of OSCAT wind speeds have a statistically significant positive bias 

when compared to the lidar wind speeds. Results are displayed in Table 4. 
  

OSCAT 

Lidar – Scatterometer 

Wind Speed (m s-1) 

2-sided 

T-test Number 

   p-val  N 

Ulidar with Ri  > -0.4 -0.22 0.41 47 

Ulidar with Ri < -0.4 -0.83 0.0003 42 
 

Table 4. Statistical results from a 2-sided Student’s T-test between wind speed thresholded on -0.4 in Ri for 

0 m s-1 ≤ U ≤ 20 m s-1. 

 

 The p-values for cases where all speeds, as well as those greater or equal to 2 m s-1, indicate 

that atmospheric stability may be a factor in the OSCAT over estimating wind speeds. Using faster 

wind speeds in the analysis shows a slightly increased positive OSCAT bias, however is 

insignificant statistically, but represents only 51 of the original 89 matching pairs. 
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Figure 6.  All Panels are Ri as a function of OSCAT, green points are rain-free identified with TOGA C-band 

radar image inspection, black represent all points.  Top panel includes OSCAT from wind speed (0 m s-1 ≤U ≤ 20 

m s-1), middle panel includes OSCAT from wind speeds (2 m s-1 ≤ U ≤ 20 m s-1), bottom panel includes OSCAT from 

wind speeds (4 m s-1 ≤ U ≤ 20 m s-1). 

 

 

2.7 Findings 

 The temporal and spatial resolutions of the lidar and scatterometer wind speed and direction 

data vary, but matching pairs chosen on scales separated less than 6 hours in time, and 10 km in 

space agree well.  The orthogonal regression implies better agreement between the ASCAT and 

lidar, with no statistically significant bias in wind speed or direction estimates, than with the 

OSCAT.  The lidar and OSCAT regression results do point to a significant bias in wind speed of 

~0.5 m s-1 using all estimated speed between 0 – 20 m s-1.  The p-value for the comparison of wind 

speeds using only speeds greater than 2 m s-1 and larger, p-value = 0.05, pointing to better 

agreement when eliminating the light and variable winds.  Removing of any data potentially 

affected by rain, also shows little to no bias, and no significance, however, with only 26 points, 

the interpretation of the statistical test results are more fallacious. 
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 The estimate of atmospheric stability, Ri, was computed; it was compared with the bias 

estimate between the lidar and the OSCAT.  Although almost all matching lidar-scatterometer data 

pairs correspond to Ri indicating unstable to nearly neutral atmospheric situations, those with Ri 

< - 0.4 (most negative) do have statistically significance when compared to those with Ri  > -0.4.  

The values of the wind speed associated with more negative Ri are also those light and variable 

speeds, less than ~4 m s-1. 

 

3. Upper Level Wind Estimation Using Near Surface Wind Measurements and Models 

 Energy generation from wind resources has emerged as an important part of a cleaner 

energy portfolio.  Wind turbines are reaching heights of 100 – 200 m to harness the highest quality 

wind resource, yet the characterization and quantification of winds at these heights are largely 

unknown.  Hasager, Pena et al. (2008) note the usefulness of SAR and scatterometer in wind 

estimates offshore.  The number of samples from scatterometer is large, and they show good 

agreement with coastal meteorological observations. 

 Two methods are currently accepted in the wind energy community for modeling wind at 

upper levels using available near surface wind speed measurements, the wind shear power law and 

the log law, (Bratton 2011).  Extrapolating wind speeds to turbine hub heights, as well as, the 

extent of the rotor plane, from surface measurements can yield poor results especially in 

atmospheric conditions that favor vertical motion.  This study compares over 4200 vertical wind 

profiles from lidar, estimating wind speed near surface height (12.5 m), turbine hub height (100 

m), rotor minimum (55 m) and maximum (155 m) heights, to modeled speeds using near surface 

data and the power and log law relationships. The data were collected in the northern Indian Ocean 

during a low activity cyclone year for the DYNAMO Experiment. 

 

3.1 Wind Shear Power Law and Bias Results 

 The wind shear power law is used to predict wind speeds as they change with height.  Based 

on a layer of fluid (air) flowing across a flat plate, Blasius predicted a shear exponent, , in 

Equation 2, to be 1/7, Schlichting and Gersten (2000).  While this  agrees with flat terrain, a value 

of 0.11 has been shown to better describe open water,  (Bratton 2011). The wind shear power law 

is  

 

U2 / U1 = (z2 / z1)   



U2 and U1 are the wind speeds at heights z2 and z1 respectively, and  is the wind shear exponent. 

 The near surface wind speed data (12.5 m in height) were extracted from the vertical 

profiles retrieved by ship board lidar and used in Equation 2 to predict the values at 55, 100 and 

155 m.  The mean difference, , between the model predicted values at these heights and the lidar 

observed values was calculated for two wind shear exponents,  = 0.1 and  = 0.14, commonly 

found in literature, (Bratton 2011).  Results split into three atmospheric stability scenarios are 

found in Tables 5 and 6.   
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Wind Shear Power Law

= 0.1 
z         

Height Number 

Mean Wind Speed 

Bias,  

Atmospheric Stability (m)   Lidar - model (m s-1)   

Very Unstable  55 389 -2.82 3.138 

-100<Ri ≤-5  100 391 -2.44 2.591 

   155 381 -1.36 1.681 

Unstable 55 3228 -0.30 3.197 

-5<Ri ≤-0.1  100 3305 -0.66 3.205 

   155 3020 -0.85 2.075 

Neutral  55 939 -0.30 3.263 

-0.1<Ri ≤0.1  100 949 -0.66 2.858 

   155 884 -0.85 1.582 
 

Table 5. Estimated bias (mean difference) between measured and modeled wind speed.  Measured near 

surface wind speed and shear exponent,  = 0.1 was used in these wind shear power law model results, (Eq 2).is 

the standard deviation in the bias estimate. 

 

 

 

Wind Shear Power Law 

= 0.14 
z      

Height Number 

Mean Wind Speed 

Bias,  

Atmospheric Stability (m)   Lidar - model (m s-1)   

Very Unstable  55 389 -3.02 3.298 

-100<Ri ≤-5  100 391 -2.71 2.791 

   155 381 -1.59 1.841 

Unstable 55 3228 -0.56 3.298 

-5<Ri ≤-0.1   100 3305 -1.07 3.373 

   155 3020 -1.36 2.268 

Neutral  55 939 0.91 3.355 

-0.1<Ri ≤0.1  100 949 0.05 2.992 

    155 884 -1.76 1.689 
 

Table 6. Estimated bias, , between estimated and modeled wind speed.  Measured near surface wind 

speeds and shear exponent,  = 0.14 was used in the wind shear power law model (Eq 2). is the standard deviation 

in the bias estimate. 

 

 

3.2 Surface Roughness Log Law and Bias Results  

The log law is another predictive relationship used by the wind energy community for 

estimating wind speed at turbine heights of interest.  The log law uses a surface roughness 

parameter in addition to the surface wind speed.  The log law is  

     

U2 / U1 = ln(z2/r) / ln(z1/r)  (3) 
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U2 and U1 are the wind speeds at heights z2 and z1 respectively, and r is surface roughness length. 

 Because of the flat ocean surface and lack of obstacles (buildings, forests etc.) interrupting 

the wind flow in open water environments, the results from predicting upper level wind using the 

log law agree closer with observations than those results from the wind shear power law.  The 

mean differences between the log law predicted values of wind speed and the lidar observed speeds 

are in Table 7 for three atmospheric stability conditions, neutral, unstable and very unstable.   

  

 

Table 7. Estimated bias (mean difference) between measured and modeled wind speed.  Measured near 

surface wind speed and surface roughness length, r = 0.001 was used in these surface roughness log law model 

results, (Eq 3). is the standard deviation in the bias estimate. 

 

 The predictive abilities of two upper level wind speed estimation models, the wind shear 

power law and the surface roughness log law, were investigated in the open water of the Indian 

Ocean.  The atmospheric conditions over the course of the DYNAMO experiment were 

predominantly unstable or near neutral, with over 3000 observations where -5 ≤ Ri ≤ 0.1.  The 

mean differences at all three upper level heights and three atmospheric conditions are negative, 

indicating over prediction when using the near surface measurements in models compared to 

observations at multiple heights. 

 

4.  Conclusions 

 Over the 3 month period, 49 co-located ASCAT and lidar observations were identified with 

mean temporal differences between observations of 10.2 minutes, and mean spatial differences of 

0.97 km.  Statistical analysis show very good agreement between the ASCAT and the lidar 

observations of wind speed and direction, and demonstrate no statistically significant bias between 

them.   

 Comparison of the 62 co-located OSCAT and lidar observations revealed a statistically 

significant positive OSCAT wind speed bias of 0.5 m s-1.  The location of the pairs of OSCAT and 

lidar observations is slightly greater both in time and in space than the ASCAT matches, differing 

by 1.4 km spatially and 1.9 hours temporally. Using Ri as an indicator of atmospheric stability, 

there is evidence that the positive wind speed bias the OSCAT sensor sees is associated with Ri < 

-0.4, or unstable atmospheric conditions. 

Surface Roughness Log Lawr = 

0.001 Height, z Number 

Mean Wind Speed 

Bias 

Atmospheric Stability (m)   Lidar - model (m s-1)   

Very Unstable 55 389 -0.16 0.057 

-100<Ri ≤-5 100 391 -0.23 0.091 

  155 381 -0.28 0.120 

Unstable 55 3228 -0.73 0.346 

-5<Ri ≤-0.1  100 3305 -1.02 0.480 

   155 3020 -1.20 0.555 

Neutral  55 939 -1.33 0.324 

-0.1<Ri ≤0.1  100 949 -1.87 0.432 

   155 884 -2.26 0.471 
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 Using a broader region of the northern Indian Ocean, 3634 co-located matches ( 0 m s-1 ≤ 

U  ≤ 20 m s-1) between the two scatterometer sensors (ASCAT and OSCAT) during the 3 month 

time period were identified.  Regression results show good agreement with a slope of 0.988 and 

not statistically different than unity, and correlation coefficient, R = 0.72.  Wind speeds retrieved 

by the OSCAT have a statistically significant positive bias of 0.24 m s-1 using speeds greater than 

the 4 m s-1 design specifications of the sensors. Wind direction inferred by the OSCAT also 

expresses a statistically significant bias, -1.56° N, p-value < 0.01. However, the direction estimates 

over all agree well with an R = 0.92 and slope result of 1.1 include all wind speeds 0 -20 m s-1. 

 Continuous vertical wind speed profiles from Doppler lidar from the ship platform up to 

1.5 km were available to compare with upper level wind speed predictions from models.  Biases 

between the observations and the modeled predictions varied by height and as a function of 

atmospheric stability.  The best model for the 01-Sept-2011 to 06-Dec-2011 time period in the 

open water of the northern Indian Ocean, using the lidar observations as truth, is the surface 

roughness log law model using a surface roughness length, r, of 0.001.   
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